Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron

نویسندگان

  • Gregory S. Okin
  • Alex R. Baker
  • Ina Tegen
  • Natalie M. Mahowald
  • Frank J. Dentener
  • Robert A. Duce
  • James N. Galloway
  • Keith Hunter
  • Maria Kanakidou
  • Nilgun Kubilay
  • Joseph M. Prospero
  • Manmohan Sarin
  • Vanisa Surapipith
  • Mitsuo Uematsu
  • Tong Zhu
چکیده

[1] Nutrients are supplied to the mixed layer of the open ocean by either atmospheric deposition or mixing from deeper waters, and these nutrients drive nitrogen and carbon fixation. To evaluate the importance of atmospheric deposition, we estimate marine nitrogen and carbon fixation from present‐day simulations of atmospheric deposition of nitrogen, phosphorus, and iron. These are compared with observed rates of marine nitrogen and carbon fixation.We find that Fe deposition is more important than P deposition in supporting N fixation. Estimated rates of atmospherically supported carbon fixation are considerably lower than rates of marine carbon fixation derived from remote sensing, indicating the subsidiary role atmospheric deposition plays in total C uptake by the oceans. Nonetheless, in high‐nutrient, low‐chlorophyll areas, the contribution of atmospheric deposition of Fe to the surface ocean could account for about 50% of C fixation. In marine areas typically thought to be N limited, potential C fixation supported by atmospheric deposition of N is only ∼1%–2% of observed rates. Although these systems are N‐limited, the amount of N supplied from below appears to be much larger than that deposited from above. Atmospheric deposition of Fe has the potential to augment atmospherically supported rates of C fixation in N‐limited areas. In these areas, atmospheric Fe relieves the Fe limitation of diazotrophic organisms, thus contributing to the rate of N fixation. The most important uncertainties in understanding the relative importance of different atmospheric nutrients are poorly understood speciation and solubility of Fe as well as the N:Fe ratio of diazotrophic organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of atmospheric nutrient inputs on marine biogeochemistry

[1] The primary nutrients that limit marine phytoplankton growth rates include nitrogen (N), phosphorus (P), iron (Fe), and silicon (Si). Atmospheric transport and deposition provides a source for each of these nutrients to the oceans. We utilize an ocean biogeochemical model to examine the relative importance of these atmospheric inputs for ocean biogeochemistry and export production. In the c...

متن کامل

Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry

[1] We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in...

متن کامل

A Three-Dimensional Model of the Marine Nitrogen Cycle during the Last Glacial Maximum Constrained by Sedimentary Isotopes

Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ∼21,000 years before present constrained by nitrogen isotopes. The...

متن کامل

Box-modelling of the impacts of atmospheric nitrogen deposition and benthic remineralisation on the nitrogen cycle of the eastern tropical South Pacific

Both atmospheric deposition and benthic remineralisation influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations in the eastern tropical South Pacific (ETSP) among nitrogen deposition, benthic denitrification and phosphorus regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycl...

متن کامل

Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model

The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011